If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+66x-272=0
a = 3; b = 66; c = -272;
Δ = b2-4ac
Δ = 662-4·3·(-272)
Δ = 7620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7620}=\sqrt{4*1905}=\sqrt{4}*\sqrt{1905}=2\sqrt{1905}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(66)-2\sqrt{1905}}{2*3}=\frac{-66-2\sqrt{1905}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(66)+2\sqrt{1905}}{2*3}=\frac{-66+2\sqrt{1905}}{6} $
| 9/2+x=12 | | 64+4x=48 | | 9y^2–2y–8=0 | | 190=-y+272 | | 6x-7-3x=3x-1+6 | | 14x=5x+540 | | 4x+12x=32x | | 6x-7=0.5(12x-2) | | 4x-14=-62 | | 6x-7=1/2(12x-2) | | (x/4)+(x/9)=(13/36) | | -45g+720=180 | | 2x-9x+15=0 | | -45x+12=114 | | 3(1-5x)=3(4x+3) | | 5(2x+9)=-22+17 | | 24-2y=23-2y+1 | | (5x-8)+(3x+20)=180 | | 8x-3=4x-83 | | 40-4x=50-24x | | 10-12+8y=8y-5 | | -5(x+3)=-5x-15 | | 10r+8=68 | | 5/6+3j=-12/30 | | -2(r+6)=21 | | -3x1.5=+4 | | 13m-26=-44-4m+1 | | 150=12x+38 | | 5(2x+9)=-11+36 | | p2=17p−70 | | 30p-15-2=30p-22+5 | | 4m-5+2m-6=7 |